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a r t i c l e i n f o

Article history:

Received 29 January 2010

Received in revised form

15 July 2010

Accepted 20 July 2010
Handling Editor: K. Worden
the computational efficiency and may be used for fast parameter studies yielding a
Available online 10 August 2010
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.07.018

responding author at: Structural Dynamics an
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Interactions through direct contact between blade-tips and outer casings in modern

turbomachines require complex formulations and subsequent expensive computational

efforts when the classical finite element method is considered. The construction of

reduced-order models through component mode synthesis techniques usually improves

better knowledge of the phenomena of interest.

In this highly nonlinear framework, the present study is dedicated to the investigation

of the capabilities of fixed- and free-interface reduction strategies to handle accurately such

problems through a realistic 2D model and complements former results involving a direct

modal projection with respective strong kinematic restrictions.

The equations of motion are solved using an explicit time integration scheme together

with the Lagrange multiplier method where friction is accounted for. The presented work

discusses the notions of both displacement and motion convergences and the possibility to

conduct fast parameter studies with the use of relevant reduction bases. It also shows that

kinematic restrictions artificially enhance the detection of modal interactions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In modern turbomachines such as aircraft jet engines, improved energy efficiency is achieved by controlling the clearance
between the blade-tips and stationary surrounding casings so that aerodynamic leaks are minimized. This strategy inherently
leads to more frequent occurrences of direct contacts between the blades and the casings that may originate nonlinear
vibrations and subsequent structural damages. Rubbing has been investigated in several related studies [1–3], but only a few
have focused on the modal interaction mechanism [4–7] that stands as the phenomenon of interest in the present work. This
very specific kind of interaction peculiar to structures featuring cyclic and axi-symmetry can arise under certain conditions:
1.
 Both structures must vibrate with modes having the same number of nodal diameters (see Fig. 1).

2.
 Both structures must vibrate at the eigenfrequency of that mode.

3.
 The backward rotating modes in the bladed disk must travel at the same absolute speed as the forward1 rotating mode

in the casing.
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at the angular velocity of the bladed disk is higher than any travelling wave velocity (such as in [5]),

n a stationary reference frame.
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Nomenclature

b subscript referring to boundary DoF
c subscript standing for correction
D damping matrix
fbd eigenfrequency of the bladed disk
fc eigenfrequency of the casing
Fc vector of contact forces
Fext vector of external forces
g gap function
h time step of the time integration scheme
i subscript referring to internal DoF
k number of nodal diameters
K stiffness matrix
M mass matrix
p subscript standing for prediction

q modal DoFs vector
u physical DoFs vector
Z number of constrained modes of the Craig–

Bampton transformation
m friction coefficient
f number of free-interface modes of the Craig–

Martinez transformation
U coordinate transformation matrix (modal,

Craig–Bampton and Craig–Martinez)
O angular velocity of the bladed disk
OcritðkÞ critical angular velocity due to a k-nodal

diameter load
CB Craig–Bampton
CM Craig–Martinez
DoF degree of freedom
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These conditions have been summarized in [8] in a very simple formula

fc ¼
kO
2p�fbd (1)

where O is the angular velocity of the bladed disk and quantities fc, fbd and k, respectively, stand for the eigenfrequency
of the casing, the eigenfrequency of the bladed disk, and the number of diameters of the associated vibration modes. The
solution Ocrit of Eq. (1) is a critical speed of the system that may lead to an unfavorable configuration due to the
simultaneous nonlinear modal resonance of the contacting components.

As a matter of fact, depending on k, three kinds of interaction motion were detected in [5]:
1.
 A damped motion for which the vibrations of both structures tend to decrease to the equilibrium position after a few
contacts.
2.
 A sustained motion in which one the vibration amplitudes of the casing and the bladed disk remain constant without
any external solicitation.
3.
 A locked motion similar to the sustained motion, in which an even number of blades stays permanently in contact with
the casing. This type of interaction was detected when the number of blades can be divided by k.

Due to the complexity and size of such formulations discretized through the usual finite element approach, computational
times may be prohibitive. Accordingly, it is proposed in the present study to extend the work introduced in [5] by building
reduced-order models through two different component mode synthesis techniques and conduct a comparison analysis
concerning the detection of specific interacting motions.

Among the variety of available component mode synthesis methods [9–12], only those allowing for a direct treatment
of the contact constraints in the reduced-order space should be considered. In other terms, the methods which define
physical displacements as interface degrees-of-freedom (DoFs) are actually eligible for this study. The Craig–Bampton (CB)
method [10] and the Craig–Martinez (CM) method [13] are the most popular techniques that meet this criteria. They are
here adapted to 2D planar models of the bladed disk and the casing in an explicit time-stepping procedure based on the
Fig. 1. Both the casing and the bladed disk are vibrating along a 3-nodal diameter free vibration mode.
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finite-difference scheme with Lagrange multipliers in order to account for contact constraints [14,15]. In this context, a
convergence study, with respect to the number of component modes within the reduction basis, introduces the notions of
displacement convergence and motion convergence.

In the first section of this paper the modeling of the bladed disk and the casing is described. Then, the contact algorithm
and the computation of reduced order model with the different reduction techniques are detailed. Finally, in the last
section, results obtained for each type of reduced order model are exposed: modal convergence of the reduced order
models computed with component mode synthesis is assessed, the detection of interaction motion is presented and
convergences in terms of displacement and motion are extensively revealed for each component mode synthesis method.

2. Modeling

The presented model involves a 2D representation of the structures of interest very similar to the ones introduced in [5].
It can be regarded as realistic since both normal contact and friction forces treatment between the casing and the tips of
the curved blades are accounted for. Moreover, as a first approach the shaft supporting the bladed disk is assumed to be
perfectly rigid. Accordingly, the axis of rotation is fixed. This assumption is commonly accepted in the linear kinematic
framework (small displacements and small strains).

2.1. Bladed disk

As depicted in Fig. 2, a 2D bladed disk comprising N=22 blades, typical of modern fans in civil aircraft turbomachines, is
considered. Blade geometry and respective displacement field are discretized with the usual Euler–Bernoulli straight beam
finite element which has no shear deformation. The global curvature of the blade is achieved through an angle ai between
adjacent finite elements. The inter blade phase angle is b¼ 2p=N.

In this context, any out-of-plane motion of the structure is neglected. It is assumed that cyclic symmetry of the bladed
disk is a key-feature to detect modal interaction and that in-plane motions are sufficient to initiate this phenomenon. The
structural connection between adjacent blades, namely the disk part, is implemented with curved beam finite elements.
The bladed disk is clamped on its rotating shaft. Modal damping is introduced in a general fashion. The total number of
DoFs for the bladed disk is 748.

A few free vibration modes of the bladed disk are described in Fig. 3 which explicitly depicts the notion of nodal
diameter denoted by k in the present study and specific to structures featuring axi- and cyclic-symmetry [16].

2.2. Casing

The casing is modeled as a ring and is discretized using 40 two-noded curved beam finite elements, as pictured in Fig. 4.
A few free-vibration modes are pictured in Fig. 5 on which the nodal diameters are also represented.

A polar coordinate system with unit vectors erc and eyc
is assigned to the casing for the displacement field and geometry

definitions. The initial location of node i is given by the point ðRc ,yi
cÞ, where Rc stands for the radius of the casing and lc the
Fig. 2. 2D model used in the study.



Fig. 3. First vibration modes of the bladed disk.

Fig. 4. Detail of a curved beam on the casing between node i and i+1.

Fig. 5. First vibration modes of the casing.

Table 1
Normalized mechanical characteristics of the model.

Casing Bladed disk

Young Modulus Ec=2.8�103 Eb=8.3�106

Density rc ¼ 2800 rb ¼ 7800

Thickness hc=5 hb=5

Width wc=50 wb=50

Radius Rc=250.5 Rb=250

DoF nc=160 nb=748

Modal damping xc ¼ 0:03 xb ¼ 0:005

Number of blades N=22
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length of the element. The finite element description involves four DoFs per node uc, uc,s, vc and vc,s. This choice is
motivated by [17] which showed that such formulation is locking free.2

Table 1 summarizes the geometrical and mechanical properties of the model.
2 The term ‘‘locking free’’ refers to the ‘‘membrane locking’’ phenomenon described in [17] leading to the underestimation of bending deformations as

well as the overestimation of natural frequencies.
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3. Solution method

3.1. Time-stepping strategy

After discretization of the weak formulation of the equations of motion, the general problem to be solved is stated as
follows for the bladed disk

Mm €um
þDm _um

þKmum ¼ Fm
extþFc

umðt¼ t0Þ ¼ um
0

_um
ðt¼ t0Þ ¼ _um

0 (2)

where the superscript m stands for master surface and for the casing

Ms €us
þDs _us

þKsus ¼ Fs
ext�Fc

usðt¼ t0Þ ¼ us
0

_us
ðt¼ t0Þ ¼ _us

0 (3)

where the superscript s stands for slave surface. In each equation, M, K and D, respectively, stand for the mass matrix
stiffness and damping matrices, and Fc, Fext and u for the contact forces, any external load and the solution vector. The
discretized contact forces Fc arise from the contact conditions, referred to as the Kuhn–Tucker optimality conditions, in the
following form:

tNðxÞZ0, gðxÞZ0, tNðxÞgðxÞ ¼ 0, 8x 2 Gm
c (4)

where Gm
c stands for the master surface, meaning the bladed disk. Conditions (4) specify that the gap g(x) separating the

two contacting components cannot be negative along the common interface Gm
c . This gap function may be defined as

8x 2 Gm
c , gðxÞ ¼ g0ðxÞþðu

mðxÞ�usðŷðxÞÞÞ � n (5)

where g0(x) is the initial positive gap between the structures, n the outward normal to the casing and ŷðxÞ the closest
counterpart of x on the casing.

The Kuhn–Tucker theorem states that there exists a normal pressure tN, assumed positive and acting on the common
contact interface in order to enforce the non-penetration condition. Simultaneously, the friction evolution law has to be
accounted for. Its simplest formulation lies in the Coulomb model, that is

JtTJrmtN

JtTJomtN ) vT ¼ 0

JtTJ¼ mtN ) (a40 such as vT ¼ a
tT

JtTJ
(6)

for which m is the coefficient of friction, vT, the tangential slip rate and tT, the tangential contact force.
At convergence, coupled conditions (4) and (6) give rise to the construction of Fc. In this work, the assumption of high

rotational velocities forbids sticking situations between the blade-tips and surrounding casing and greatly simplifies the
final solution strategy [5].

This problem is solved using explicit central differences scheme together with an adapted version of the forward increment
Lagrangian method [15,14,5]. In this section, u refers indistinctly to um or us, respectively, mentioned in Eqs. (2) and (3).

The solution method is divided into three steps:
1.
 Prediction of the displacements un +1 of the ongoing time-step n by ignoring the contact reactions. These predicted
displacements un +1,p are expressed as

unþ1,p ¼
M

h2
þ

D

2h

� ��1 2M

h2
�K

� �
unþ

D

2h
�

M

h2

� �
un�1þFext,n

� �
(7)

Determination of the gap function vector gnþ1, p between these structures following Eq. (5). A search algorithm
2.

identifies all contactor nodes that have penetrated the target domain. Satisfying the impenetrability conditions implies
that the final gap functions gnþ1 (linearized when necessary) must be positive or vanish, meaning

gnþ1 ¼ CT
Nunþ1,cþgnþ1,pZ0 (8)

where the corrected displacements unþ1,c are being calculated. CN is the contact constraint matrix in the normal
direction. Eq. (8) is rewritten in an equivalent form

CT
Nunþ1,cþg�nþ1,p ¼ 0 (9)
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where g�nþ1,p ¼ ProjRSg
�

ðgnþ1,pÞ and Sg¼ sizeðgnþ1,pÞ. In other words, only the negative terms of gnþ1,p, meaning that a
penetration has been detected, are kept in g�nþ1,p in order to calculate the corresponding corrected displacements unþ1,c.
3.
 Correction of the displacements through the calculation of normal contact and friction forces (due to high relative
velocities between the casing and the blade-tips, it is assumed that only sliding occurs). It yields the addition of the
unknown Lagrange multipliers k (or identically tN when using this method) in the governing equations such as

unþ1 ¼ unþ1,pþunþ1,c

¼ unþ1,p�
M

h2
þ

D

2h

� ��1

CNTk (10)

The new matrix CNT contains the normal and the pure sliding friction constraints. Ultimately, Eqs. (9) and (10) can be
recast in such a form that the Lagrange multipliers are solution of

k¼ CT
N

M

h2
þ

D

2h

� ��1

CNT

 !�1

g�nþ1,p (11)

Explicit time integration schemes usually require very small time steps specially for stiff problems such as unilateral
contact. In addition, the detection of contact for large finite element formulations dramatically slows down the whole
process. This legitimates the use of condensation approaches such as modal projections [5] or more elaborated component
mode synthesis techniques.

3.2. Reduction techniques

In most industrial applications, finite element models involve a high number of DoFs leading to cumbersome
computation times. Numerical techniques such as component mode synthesis procedures allow for a dramatic size
condensation of the problem to be solved. The latter are usually coupled with substructuring approaches [9] but only the
reduction aspect is considered in the present study.

Reduction from the original full size space u of size n to the reduced order space general coordinates q of size m, with
m5n can be achieved by selection of any suitable rectangular transformation matrix of size n�m such as

u¼Uq (12)

resulting in a much smaller number of generalized displacements.
The content of matrix U is prone to discussion here regarding the different criteria of interest: (1) the type of interaction

detected, (2) computational times (3) treatment of contact constraints directly in the reduced-order space. Eq. (2) thus
becomes

M̂ €qþD̂ _qþK̂q¼UT
ðFextþFcÞ (13)

with Â ¼UTAU and A�M, D or K.

3.2.1. Modal projection

By assuming that restricting the kinematics of the blades to a limited motion will help in detecting a specific type of
interaction [5], displacement vector u is first developed over two k-nodal diameter modes allowing only those travelling
waves having k nodal diameters to propagate in the structure. Accordingly, the coordinate transformation matrix reduces
to:

U¼ ½/k1 /k2� (14)

where /k1 and /k2 are two k-nodal diameter free vibration modes. Both the casing and the bladed disk reduced models
become 2�2 systems of differential equations. Even though the very small size of the models implies a significant system
condensation, contact forces cannot be computed directly in the reduced-order space and require a backward and forward
mapping with the finite element space at each time step.

By strongly limiting the motion of the two interacting components, it is expected that the detection of an interaction
involving k-nodal diameter mode shapes will be possible. Nevertheless, the treatment of the contact forces is not
straightforward. The main advantage of the above mentioned component mode synthesis methods lies in their formulation
that preserves a few physical DoFs in the reduced order model. The kinematics restrictions offered by the modal projection
are lost but the contact treatment is possible directly in the reduced space.

3.2.2. Component mode synthesis

These physical DoFs are chosen so that they match all the DoFs on which contact forces may be applied over time. By
doing so the contact algorithm is significantly improved since, at each time step, both the detection of penetrations and the
computation of the induced correction on the predicted displacements can be done directly in the reduced space.

Craig–Bampton (CB) and Craig–Martinez (CM) methods are applied considering each structure as independent
substructure connected to each other through a highly nonlinear contact interface.
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CB and CM methods first require the distinction of the DoFs of the structure within two groups: the internal DoFs and the
boundary DoFs. In general, the definition of these groups is closely related to the loadings applied on the structures. As mentioned
above, the boundary is chosen so that it contains any DoF that might be supporting contact force during the simulation, i.e. the
two DoFs u and v at the tip of each blade for the bladed disk and the u and v DoFs for each node of the casing. As a result, the
boundary of the bladed disk contains 44 DoFs. No component mode synthesis method is applied on the casing since all the u and v

DoFs of the structure would be kept in the boundary leading to a reduced order model very close from the finite element model in
terms of number of DoFs. One may observe that rotational DoF y is not kept within the boundary. Indeed, this rotational DoF is not
required for managing contact. Moreover, component modes associated with y may be mathematically redundant with
component modes associated with u and v and lead to numerical errors or ill-conditioned reduced matrices.

A reorganization of the general problem (2) to be solved is necessary by separating the DoFs in two groups: the internal
DoFs (qi) and the external DoFs (or boundary: qb). This yields

Mii Mbi

Mib Mbb

" #
€u i

€ub

 !
þ

Dii Dbi

Dib Dbb

" #
_u i

_ub

 !
þ

Kii Kbi

Kib Kbb

" #
ui

ub

 !
¼

Fext,i

Fext,b

 !
þ

Fc,i

Fc,b

 !
(15)

By definition of the boundary DoFs Fc,i ¼ 0.

3.2.2.1. Craig–Bampton method. By definition, the transformation matrix U of the CB method stores the following
modes [10]:
1.
 W, a truncated set of eigenmodes of the structure where the boundary DoFs are fixed (see Fig. 6(a)), commonly named
component modes. The number of component modes is controlled via Z;
2.
 UL, a full set of static deformations where, for each boundary DoF, a unitary displacement is applied while the other
ones are fixed (see Fig. 6(b)). Those are usually called constrained modes.

These notations yield:

U¼ ½W UL� (16)

By construction and due to reorganization (15), Eq. (16) can be expanded as follows:

U¼
W,i UL,i

0 I

� �
(17)

3.2.2.2. Craig–Martinez method. This technique generalizes the usual modal projection defined in Section 3.2.1 by giving
access to some physical displacements directly in the reduced space through an approximated participation of the
Fig. 6. Craig–Bampton method: (a) component modes and (b) constrained modes.
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removed high frequency content modes. The theoretical description given in the paper focuses on the impact of the
pseudo-static approximation on the expression of the internal DoFs but the Craig–Martinez change of variable may be
obtained faster by using explicitly the generalized force vector.

Displacements vector u is first projected onto free mode coordinates of the structure by separating low and high
frequency content contributions:

u¼W1q1þW2q2 (18)

where W1 represents the f first free vibration modes kept in the reduction basis and W2, high frequency modes that will be
replaced by a static approximation.

Let denote

W¼ ½W1W2� and X¼
X1 0

0 X2

" #
(19)

where X1 and X2 are the diagonal matrices containing the square of the angular eigenfrequencies associated with modes
W1 and W2 such as WTKW¼X which leads to

K�1
¼WX�1WT (20)

Reading Eq. (20), it yields

K�1
¼W1X

�1
1 WT

1þW2X
�1
2 WT

2 (21)

The pseudo-static approximation neglects the dynamical contribution €q2 of the high frequency modes W2, in other words

X2q2 ¼WT
2F (22)

Eq. (22) is multiplied by W2X
�1
2 and yields

W2u2 ¼W2X
�1
2 WT

2F (23)

which, combined to Eq. (21) leads to

W2u2 ¼ ðK
�1
�W1X

�1
1 WT

1ÞF (24)

Finally, by plugging Eq. (24) in Eq. (18), we find

u¼W1u1þðK
�1
�W1X

�1
1 WT

1ÞF (25)

or, in a contracted form:

u¼W1u1þRF (26)

where R is called the residual flexibility matrix.
The key feature of CM method is to insert the boundary DoFs in the unknowns of the reduced system by modifying the

transformation of Eq. (26). This is achieved by expressing the external forces F as a function of ub of Eq. (15) and q1 of Eq.
(18). Consequently, Eq. (26) becomes

ui

ub

 !
¼

W1i

W1b

" #
q1þ

Ri

Rb

" #
F (27)

The notations is simplified here, Rb and Ri are blocks of the square matrix R. However, since F only has coordinates on the
boundary DoFs (the boundary DoFs are chosen to be the only one being loaded) the equation can be simplified

Ri

Rb

" #
F¼

Ri1 Ri2

Rb1 Rb2

" #
0

F1

 !
(28)

and from now on: Rb ¼Rb1, Ri ¼Ri1 and F¼ F1. Eq. (27) becomes then

ui

ub

 !
¼

W1i Ri

W1b Rb

" #
q1

F

� �
(29)

The second block of Eq. (29) is

F¼R�1
b ðub�W1bq1Þ (30)

This finally leads to the change of variable

U¼
W1i�RibR�1

bb W1b RibR�1
bb

0 Ibb

" #
(31)

The component modes of the CM method are the free vibration modes. Some of them are depicted in Fig. 7.



Fig. 7. Craig–Martinez method component modes.

Fig. 8. Deformation of the casing for k=2 and k=3.
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4. Results

The bladed disk is rotating and its angular velocity remains constant during each simulation. The initial blade tip/casing
distances is 1 mm for all blades. Between time t=0 s and t=2�10�4 s a short external k-nodal diameter impulse is applied
on the casing in order to initiate contact. Simulations are conducted for k=2 and k=3 pictured in Fig. 8 and increasing
angular velocities. Friction coefficient is set to m¼ 0:2.
4.1. Modal projection

Note: in the following, most of the results associated with the detection of interaction motions are pictured with blade-
tip/casing distances such as in Fig. 9(a). Each blue plot stands for the distance between the casing and one of the 22 blades
of the bladed disk. When parameter k=2 only 11 plot are visible due to the symmetry of the contact simulation. Contact
between the casing and the blade occurs when the blade-tip/casing distance is equal to zero. Consequently, each
interaction motion may be easily observed from these figures. The black dashed line stands for the initial clearance
between the bladed disk and the casing. All figures are plotted using the same scale in order to ease comparison.
Displacements and time have been normalized.

Even though modal projection leads to two-DoFs systems of equations, simulations remain costly because
displacements must be projected back to the physical space at each time step to be correctly corrected when penetrations
are detected. On the other hand, it offers the opportunity to detect the expected motion for further investigations.

In agreement with previous results [5], three kinds of motions are observed, namely damped (Fig. 9(a)), sustained
(Fig. 9(c)) and divergent motions. Among the different sustained motions observed, a specific kind named ‘‘locked motion’’
was detected: a few blades come in permanent contact with the casing, as illustrated in Fig. 9(b), and push a forward
travelling wave. The latter is connected to the divisibility of the number of blades N by the number of diameters k of the
load exerted on the casing [5]. It means that a 3-diameter configuration might lead to locked sustained motions with a
geometry of 30 blades while it could only lead to unlocked sustained motions with 29 blades. As a direct consequence, the
contact locations will remain at the same blade tips for all times.



Fig. 9. Blade tip/casing distances, initial clearance (- - - - - - -). (a) Damped motion: O¼ 0:4, k=2; (b) locked motion: O¼ 0:96, k=2; and (c) sustained

motion: O¼ 1:68, k=3.

Fig. 10. Convergence of the reduced order models obtained with each component mode synthesis method toward the finite element model: (a) CB

reduced order model and (b) CM reduced order model.
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4.2. Component mode synthesis methods

4.2.1. Modal convergence

Before carrying out time simulations based on the reduced order model computed with each component mode
synthesis method, their convergence toward the finite element model must be checked. In order to do so the focus is made
on the eigenfrequencies of the reduced order model and their evolution while the parameters of reduction of each
component mode synthesis technique Z and f are increased. The evolution of the error between some eigenfrequencies of
the finite element model and the eigenfrequencies of each reduced order model in function of Z for the CB method and f
for the CM method are, respectively, depicted in Fig. 10(a) and (b).
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It is noticeable that the eigenfrequencies of two reduced order model converge toward the ones of the finite element
model in a very different way. While the eigenfrequencies of the CB reduced order model converge smoothly toward the
finite element ones, the error between the eigenfrequencies of the CM reduced order model and the finite element model is
either very high (superior to 1%, from 20% to 90%) either zero.

Each type of convergence is associated with the nature of the reduction basis used to compute the reduced order model.
Indeed, in the case of the CM reduced order model, component modes are precisely the normal modes of the finite element
model. Consequently, a CM reduced order model computed with n component modes possesses exactly the n first
eigenfrequencies of the finite element model.
4.2.2. Detection of interaction motions

CB and CM methods are computationally very efficient since contact forces are computed directly with the reduced
models. Anyway, the kinematic restrictions on the displacements of the bladed disk are dropped off leading to difficulties
in the detection of k-nodal diameter coincidence.

The results presented in this section are limited to the CB method since, for the sake of brevity, the similar results
obtained with the CM method are not detailed. The computed reduced order model of the bladed disk implies Z¼ 88
constraint modes. The modal projection of the casing over its two first k-nodal diameter free vibration modes is considered
with k=2 and k=3. Consequently, the model of the casing is the same as in Section 4.1, it is obtained by modal projection
and contains two DoFs associated with each free vibration mode used.

Similarly to the previous results, three kinds of motion are detected: damped motions such as the one pictured in
Fig. 11(a), sustained motions as displayed in Fig. 11(c) and locked motions depicted in Fig. 11(b). As expected, the
frequency content of the vibrations is much richer in the current configuration since the reduced space is spanned by more
basis vectors. Consequently, during a locked motion, the non-contacting blades feature independent vibratory patterns in
Fig. 11(b) in opposition to a constrained modal projection. During a sustained motion, the amplitudes of vibration are
larger as shown in Fig. 11(c).

The previous observations may also be analyzed as follows: a vibration of the casing on a k-nodal shape may be a
necessary condition for a k-nodal travelling wave coincidence with the facing bladed-disk to occur. One should notice that
results presented in this section are dependant on the reduction parameter Z as opposed to the results associated with
Fig. 11. Blade tip/casing distance for the interaction motions detected, initial clearance (- - - - - - -). (a) Damped motion: O¼ 1:2 (k=2); (b) locked motion:

O¼ 1:56 (k=2); and (c) sustained motion: O¼ 1:38 (k=3).



Fig. 12. Convergence of the results obtained with CB method Z¼ 0 (dotted grey line); Z¼ 44 (dotted black line); Z¼ 88 (grey line); Z¼ 220 (black line);

ufeðtÞ (red line). (a) Damped motion, blade 10, O¼ 0:56, k=2; (b) locked motion, blade 9, O¼ 1:12, k=2; and (c) sustained motion, blade 2, O¼ 1:28, k=3.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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modal projection given in the previous section. Consequently, it is of great interest to assess the convergence of the given
results with respect to a variation of parameter Z on which focuses the next section.

4.3. Convergence in displacement

The primary challenge in constructing accurate reduced order model is the selection of the basis vectors. Capturing the
dynamics of a system is usually achieved through a truncated set of specific shapes. Unfortunately, the latter may be
inadequate for nonlinear problems since uniform convergence of coordinate transformation Eq. (12) for m-n is proved for
linear analyses but does not hold for nonlinear analyses especially for stiff systems such as the one investigated here. It is
therefore mandatory to perform a convergence analysis in an empiric fashion by comparing the results to the direct finite
element formulation with an increasing number (Z or f) of basis vectors.

Even though convergence in time and space are connected, we assume here a constant time step h=2.5�10�7 s for all
simulations. Convergence of reduced order model computed with CB and CM techniques is studied for each of the three
interaction motions detailed above with k=2 and k=3 (for sustained motions). Reduction parameters Z and f are chosen in
such a way that they remain multiples of 22. This condition ensures the consistency of the enrichment of the reduction
basis with the number of harmonics of the system.3

4.3.1. Craig–Bampton method

Convergence is fast in the case of a damped motion as pictured in Fig. 12(a) but one may clearly observe the great
sensitivity of the results to the reduction basis in the case of locked and sustained motions in Figs. 12(b) and (c). Indeed, the
quality of the approximation of blade tip displacements directly depends on the selected reduction basis vectors. As a
consequence, the dimension of the reduced-order model will have an influence on the blades locking on the casing and will
also impact the vibration levels the other blades. That is the reason why different vibration levels can be observed in
Figs. 12(b) and (c). However, results obtained with a large reduction basis (Z¼ 220) are comparable with the finite element
results.
3 More details about the harmonic notion for cyclic symmetric systems may be found in [16]. In the case of our 2D model, the 22 blades imply that

the total number of harmonics is 12, harmonic 0 and 11 are simple while harmonics 1–10 are double.



Fig. 13. Convergence of the results obtained with CM method f¼ 0 (dotted grey line); f¼ 44 (dotted black line); f¼ 88 (grey line); f¼ 220 (black line);

ufe(t) (red line). (a) Damped motion, blade 10, O¼ 0:56, k=2; (b) locked motion, blade 9, O¼ 1:12, k=2; and (c) sustained motion, blade 2, O¼ 1:28, k=3.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.3.2. Craig–Martinez method

Results of the convergence of the reduced order model are shown for damped, locked and sustained motions,
respectively, in Fig. 13(a)–(c). These results are similar to the ones obtained with the CB method. As previously observed, a
large number of modes is required to ensure convergence in terms of blade tip displacements in the cases of locked and
sustained motions. This is particularly true for the locked motion for which displacement convergence seems slower than
with the CB model.

Results obtained for the two component mode synthesis methods show a slow convergence of the solution with respect
to the finite element reference solution with an increasing number of basis vectors.

For the CM method, it is noticeable that for a small f (f¼ 0 and f¼ 44) the results are completely different from the
reference solution. In comparison, for similar Z, the CB method leads to better results.

A lower threshold for accurate results is Z¼f¼ 88 for damped motions, in the case of sustained or locked motions,
even Z¼f¼ 220 do not lead to satisfying results. Comparatively to the size of the finite element model, the condensation
ratio for Z¼f¼ 88 – about 18% – required for displacement convergence may appear too large. It is then worthy to note
that this ratio actually reflects that only four families of 22 original bladed disk vibration modes are required for
displacement convergence. The ratio between the number of modes of each family of original bladed disk vibration modes
in 2D is about 3%4 while the same ratio for typical 3D industrial models approximately is 0.005%. As a consequence, the
condensation ratio for 3D industrial models is expected to be considerably smaller and the combination of component
mode synthesis methods with the contact algorithm shall be more efficient. However, it should be underlined that 3D
models do not provide – due to inconceivable computation times – access to a reference solution as mentioned in [18].

The conclusion of this convergence study is the extreme sensitivity of the results toward the choice of the reduction
basis. Since a typical displacement convergence requires very high reduction parameters, it may be of great interest to
assess the component mode synthesis methods used with another criterion such as the motion convergence introduced in
the next section.
4 This estimation stems from the number of blades of the model divided by the number of DoFs.



Fig. 14. Motions detected with respect to m and O with modal projection: divergent motions (black filled rectangle); locked motions (grey filled

rectangle) and damped motions (rectangle).

Fig. 15. Motions detected with respect to m and O with the CB reduced order model: divergent motions (black filled rectangle); locked motions

(grey filled rectangle) and damped motions (rectangle): (a) Z¼ 22; (b) Z¼ 44; (c) Z¼ 66; and (d) Z¼ 88.
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4.4. Convergence in motion

As underlined in the previous section, a convergence in terms of displacement is not easily reached due to the inherent
difficulties brought by the contact formulation. The fact that the structural displacement field is not exactly retrieved
because of the reduction process, due to a phase shift of the blades in contact with the casing, does not mean that a more
global convergence with respect to the type of motion detected cannot be obtained. This more global convergence is
defined as motion convergence and is now inspected. No finite element solution is calculated for reference because of its
prohibitive computation times. Iterations along O and m imply about 700 simulations in order to draw a motion map such
as the one depicted in Fig. 14 which is extremely time-consuming. As a consequence, only the case k=2 is investigated in
this section and only one type of interaction motion may occur: the locked motion.

All the motion maps depicted in this section are obtained with identical simulation parameters and the critical speed
defined in Eq. (1) is the same for every map and is represented with a red line. The only variable is the type of reduction
technique and its associated reduction parameter. Results are presented for both modal projection and component mode
synthesis methods for which the convergence is asymptotically assessed by increasing Z and f, Z¼f¼ ½22,44,66,88�.

First, the map pictured in Fig. 14 highlights the interaction motions detected with modal projection. Three distinct areas
may be seen: (1) a damped motion area for low rotational velocities, (2) a locked motion area and a (3) divergent motion
area. The boundary between the interaction motion area and the divergent motion area is clearly dependant on the friction
coefficient m. On the contrary, the limit between damped motion area and interaction motion area is unclear in Fig. 14.
Although, it is noticeable that the critical speed appears as a higher threshold of the damped motion area.
Fig. 16. Motions detected with respect to m and O with the CM reduced order model: divergent motions (black filled rectangle); locked motions

(grey filled rectangle) and damped motions (rectangle): (a) f¼ 22; (b) f¼ 44; (c) f¼ 66; and (d) f¼ 88.



Fig. 17. Superimposition of the boundaries between interaction and divergent motions areas for each reduced order model: Z,f¼ 22 (grey line), Z,f¼ 44

(dotted grey line), Z,f¼ 66 (dotted red line), Z,f¼ 88 (red line). (a) Craig–Bampton reduced order model and (b) Craig–Martinez reduced order model.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Figs. 15(a)–(d) show the motion maps obtained with the CB method for different values of the reduction parameter Z.
From Z¼ 22 to Z¼ 88, one may observe the great similarity of the four motion maps. This similarity is highlighted by

the superposition of the boundaries between interaction motion and divergent motion areas in Fig. 17(a). For each
of these four motion maps, the critical speed defines quite precisely the boundary between damped motion and interac-
tion motion areas. The stability of the motion map while Z increases highlights that motion convergence is easily
reached with the CB method and contrasts with the sensitivity of the displacement convergence observed in the previous
section.

Figs. 16(a)–(d) show the motion maps obtained with the CM method for different values of the reduction parameter f.
Motion maps obtained with the CM component mode synthesis method are comparable to the ones obtained with the

CB method: the boundary between divergent motion and interaction motion areas is very stable – which appears clearly in
Fig. 17(b) – and only few differences are observable around the critical speed, meaning the boundary between damped
motion and interaction motion areas. Same as for the CB method, these maps show that motion convergence is easily
reached with the CM method.

Both motion maps obtained with the CB and the CM methods underline that modal projection tends to artificially favor
the detection of modal interaction [19]. On the contrary, the matching of motion maps obtained with two different
component mode synthesis methods – implying two different reduction bases and reduced spaces – lend weight to the
capacity of reduced order models to be used for detecting modal interaction.
5. Concluding remarks

A combination of component mode synthesis methods with a contact algorithm based on the Lagrange multiplier
technique has been introduced in this paper. The use of three types of reduction methods – modal projection over the two
first k-nodal diameter free vibration modes and two component mode synthesis methods namely the Craig–Bampton and
the Craig–Martinez methods – emphasized the consistency of interaction detection since results presented in this paper
show that two different component mode synthesis methods lead to similar results.

It was also pointed out that displacements obtained for each DoF of the reduced order models are extremely sensitive to
the modal reduction basis considered due to the highly nonlinear contact case. Consequently, the notion of motion
convergence was introduced in addition to the well-known notion of asymptotic convergence in terms of displacements.

For 2D planar finite element models, it was shown that only a few modes in the modal reduction basis are necessary to
determine accurately the different interaction motions. However, in order to get a good accuracy in terms of
displacements, the size of the modal reduction basis has to be increased. Results show that Craig–Martinez component
mode synthesis method gives better results with a smaller reduction basis. Finally, it was highlighted that strong kinematic
restrictions induced by modal projection artificially enhances the detection of modal interaction.

The fact that a combination of the contact algorithm with component mode synthesis methods lead to consistent
results in terms of modal interaction detection is promising for 3D contact simulations to come.
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